On the Error-Correcting Capabilities of Cycle Codes of Graphs

نویسندگان

  • Laurent Decreusefond
  • Gilles Zémor
چکیده

We are interested in a function f(p) that represents the probability that a random subset of edges of a-regular graph G contains half the edges of some cycle of G. f(p) is also the probability that a codeword be corrupted beyond recognition when words of the cycle code of G are submitted to the binary symmetric channel. We derive a precise upperbound on the largest p for which f(p) can vanish when the number of edges of G goes to innnity. To this end we introduce the notion of fractional percolation on trees, and calculate the related critical probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

An approach to fault detection and correction in design of systems using of Turbo ‎codes‎

We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...

متن کامل

Optimal Cycle Codes Constructed From Ramanujan Graphs

We aim here at showing how some known Ramanujan Cayley graphs yield error-correcting codes that are asymptotically optimal in the class of cycle codes of graphs. The main reason why known constructions of Ramanujan graphs yield good cycle codes is that the number of their cycles of a given length behaves essentially like that of random regular graphs. More precisely we show that for actual cons...

متن کامل

A Generalization of the Parallel Error Correcting Codes by Allowing Some Random Errors

This paper generalizes parallel error correcting codes proposed by Ahlswede et al. over a new type of multiple access channel called parallel error channel. The generalized parallel error correcting codes can handle with more errors compared with the original ones. We show construction methods of independent and non-independent parallel error correcting codes and decoding methods. We derive som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1997